

Perda de Solo em Áreas de Preservação Permanente da Sub-Bacia do Rio Ribeira de Iguape - SP

Marina Pedroso Carneiro ⁽¹⁾, Reginaldo Barboza da Silva ⁽²⁾, Piero Iori ⁽³⁾, Jéssica Silva Rosa⁽¹⁾

- ¹⁾ Universidade Estadual Paulista (UNESP), Registro, SP, Brasil, 11900-000, apresentador, cmarinapedroso@gmail.com.
- (2) Campus Experimentald e Registro, Universidade Estadual Paulista (UNESP), Registro, SP, Brasil, 11900-000
- ³⁾ Universidade Federal de Goiás (UFG), Regional Jataí, Curso de Agronomia, Jataí, GO.

RESUMO: O estudo da erosão e conservação do solo, assim como, dos impactos ambientais cusados pela agricultura e a pecuária é de extrema importância para a tomada antecipada de decisões e adoção de técnicas e manejos. Assim, foi objetivo desse trabalho avaliar o impacto do uso irregular do solo e associá-lo às perdas por erosão em locais que deveriam ser mantidos preservados, isto é, Áreas de Preservação Permanente (APP). A pesquisa foi conduzida em áreas de cultivo de bananeiras e pastagem natural, localizadas irregularmete ao longo do curso d'água do Rio Ribeira de Iguape. Coletas e análises dos atributos físicos foram realizadas em materiais de solo de duas faixas marginais, sendo elas de 0 à 30 m e de 50 à 100 m de distância do Rio Ribeira. A estimativa da perda de solo foi feita com base na Equação Universal de Perdas de Solo (EUPS). Para as condições em que foi conduzido este estudo, concluiu-se que na área de bananal a perda de solo anual pode ser até dez vezes maior do que na área de pastagem, devido principalmente ao tipo de cobertura que esta última oferece ao solo.

Termos de indexação: erodibilidade, erosão, APP's.

INTRODUÇÃO

Nas últimas décadas, estudos apontam que as áreas agrícolas nas Bacias Hidrográficas, têm sido impactadas pelo uso inadequado do solo e ausência de boas práticas, desta forma é importante salientar que o nível de degradação ambiental em que se encontram, decorre da falta de comprometimento embiental e inadequação de políticas públicas (ARAÚJO et al.2009). Estima-se que atualmente no Brasil, 28% dos solos já estejam degradados ou em processo de degradação, aproximadamente 180 milhões de hectares, devido ao desmatamento associado ao manejo inadequado do solo e deste total tem-se por volta de 60 milhões de hectares de

pastagens degradadas (FAO, 2008).

O cenário apresentado é mais crítico naquelas áreas laterais aos cursos d'água, denominados de áreas de preservação permanente (APP) que, segundo legislação do Código Florestal (lei n° 12.651 de 25 de maio de 2012), estas áreas se apropriadas para uso da terra, devem estar cobertas com a vegetação original, com a função de atenuar os efeitos erosivos e a lixiviação dos solos, contribuindo também para a regularização do fluxo hídrico, redução do assoreamento dos cursos d'água e reservatórios, trazendo também benefícios para a fauna (COUTINHO et al, 2013).

No Vale do Ribeira – SP, o cultivo de bananeiras e a pecuária são predominantes, segundo informações da ABAVAR (Associação de Bananicultores do Vale do Ribeira) 70% dos 36 mil hectares de bananais na região estão nas margens do curso d'água da bacia e os 30% restantes são cultivados em encostas.

lori (2010) afirma que a falta de boas práticas agrícolas tem acelerado o processo erosivo (laminar, sulcos e voçorocas), induzindo a extenuação contínua do solo e ao assoreamento do Rio Ribeira de Iguape e seus efluentes. Silva et al. (2010), chama a atenção para o impacto de diferentes usos sobre Cambissolos em áreas de APP na sub-bacia do Rio Ribeira de Iguape — SP. Diante do exposto, este trabalho teve como objetivo estimar a perda de solo em áreas de preservação permanente localizadas na margem do Rio Ribeira de Iguape — SP, em função do uso e atividades antrópicas ao solo.

MATERIAL E MÉTODOS

O experimento foi conduzido no município de Registro -SP (**Figura 1**), ao longo do Rio Ribeira de Iguape (latitude de 24°30' Sul, longitude 47°48' Oeste e altitude em torno de 25 m).

Três cenários foram avaliados: a) Área sob cultivo

de bananeiras, com aproximadamente 6 ha, b) Área sob pastagem, 10 ha e c) Área sob mata nativa, 3 ha (**Figura 2**).

O clima da região é do tipo subtropical úmido (Cfa), segundo a classificação de Köppen, no qual, o índice médio anual de pluviosidade é elevado (1400 mm) e as chuvas bem distribuídas durante todo o ano, fazendo com que não exista a estação da seca.

A área em estudo está sobre manchas de Cambissolo Háplico, de classe textural francosiltosa. Esta classe de solo predomina lateralmente ao longo do rio, segundo o levantamento e reconhecimento com detalhes de solos da região do Ribeira de Iguape no estado de São Paulo (EMBRAPA, 2018).

Os tratamentos, forma de amostragem e coleta de dados nas unidades experimentais consideraram as seguintes condições de contorno:

- a) Uso/atividade antrópica: as avaliações foram realizadas em áreas sob cultivo de banananeiras e pastagem;
- b) Faixas marginais em conformidade com o descrito no Código Florestal: as avaliações foram realizadas em duas faixas marginais de vegetação (0,0 a 30 m e 50 a 100 m);
 - c) Camada do solo (0,00 0,20 m);

O arranjo experimental constou, portanto, de um esquema fatorial do tipo 2 x 2 (dois usos/manejo e duas faixas marginais de proteção), totalizando quatro unidades experimentais.

A estimativa da perda de solo foi feita com base na Equação Universal de Perdas de Solo (EUPS), proposta por Wischmeier e Smith (1965). Esta equação estima a perda média anual de solo associada tanto a erosão laminar quanto linear, utilizando seis fatores associados ao clima, solo, topografia e manejo do solo da área estudada.

A equação é expressa como segue: A= R x K x LS x C x P. No qual: R = EI - índice de erosão produto da energia cinética da chuva, melhor relação usada para medir a potencialidade da chuva (WISCHMEIER, 1958); K = erodibilidade, (modelo de Denardin (1990)); LS = fator topográfico (BERTONI, 1959), sendo LS = $0.00984 \, C^{0.63} D^{1.18}$, onde C é o comprimento da rampa em metros e D a declividade (%); neste caso C = 30 e 70 metros; D % =Declividade do terreno no qual foram feitas as coletas de solo, considerou-se 1,5 %; P = Prática conservacionista, de acordo com Righetto (1998), em inclinações de 0 à 7%, o fator P é de 0,5; C = é o fator de uso e manejo solo (adimensional) e seus valores foram admitidos de acordo com Silva et al. (2010), sendo de 0,122 para a cultura da banana e de 0,01 para área de pastagem.

Para realização de análises estatísticas foi

utilizado o software SISVAR (FERREIRA, 2011).

RESULTADOS E DISCUSSÃO

Para a estimativa de R (erosividade da chuva e enxurrada) foi utilizada uma série histórica dos anos de 2005 à 2015, sendo este fator calculado de acordo com a equação desenvolvida para o município de Juquiá – SP por Silva et al. (2010). Após dados coletados, obteve-se o valor de 9310 MJ mm ha-1 h-1, o qual foi usado posteriormente na EUPS.

A intensidade de erosão pela água é grandemente afetada tanto pelo comprimento do declive, como pelo seu gradiente. Esses dois efeitos, pesquisados separadamente, são representados na equação de perda de solo por L e S respetivamente. Os valores para o fator topográfico LS calculado nas condições descritas foram de 0,14, considerando comprimento da rampa de 30 metros, e de 0,23, considerando comprimento de 70 metros, ambos com declividade do terreno de 1,5%.

O fator P (prática conservacionista) foi atribuído considerando plantio em nível e com inclinação entre 0 e 7%, sendo por tanto de 0,5.

A intensidade de erosão de uma área qualquer pode ser influenciada mais pelo declive, características da chuva, cobertura vegetal e manejo, do que pelas propriedades do solo. Contudo, alguns solos são mais facilmente erodidos do que outros, mesmo quando o declive, a precipitação, a cobertura vegetal e as práticas de controle de erosão são as mesmas. Essa diferença devido às propriedades inerentes ao solo é referida como erodibilidade do solo (FOSTER et al., 1981).

Na **tabela 1** são apresentados valores estimados para o fator K (erodibilidade) da EUPS pelo modelo proposto por Denardin (1990), no qual mostram que a área de cultivo de banananeiras apresentou maior sucetibilidade à erosão comparado à área de pastagem.

As perdas de solo que ocorrem em uma área mantida continuamente descoberta podem ser estimadas pelo produto dos termos R, K, L e S da equação de perda de solo. Entretanto, se a área estiver cultivada, tais perdas serão reduzidas devido à proteção que a cultura oferece ao solo. O fator uso e manejo do solo (C) é a relação esperada entre as perdas de solo de um terreno cultivado em dadas condições e as perdas correspondentes de um terreno mantido continuamente descoberto e cultivado (WISCHMEIER; SMITH, 1965). Seus valores foram admitidos de acordo com Silva et al. (2010), sendo de 0,122 para a áreas dob cultivo de bananeiras de 0,01 para área de pastagem sem manejo.

A área de pastagem apresentou menores perdas de solo em relação a área de cultivo de banana, independente da faixa marginal, principalmente pela diferença de valor do fator C, sendo menor para a pastagem devido a arquitetura das plantas e a proteção que a gramínea oferece ao solo.

A equação de perda de solo é um instrumento valioso para os trabalhos de conservação. Com o seu auxílio, pode-se predizer com elevada precisão as perdas anuais médias de solo em condições específicas de declive, solo, sistemas de manejo e cultivo entre outros fatores. Pode ser utilizada como guia para o planejamento do uso do solo e assim determinar as práticas de conservação mais apropriadas para dado terreno.

CONCLUSÕES

Para as condições que este estudo foi realizado, na área sob cultivo de bananeiras, independente da faixa marginal de proteção do rio Ribeira de Iguape, a estimativa de perda média anual de solo foi maior do que na área sob pastagem natural. Na faixa de 50 à 100 m, o impacto uso/manejo sobre as perdas de solo foi aproximadamente, dez vezes maior do que as perdas estimadas para área sob pastagem natural.

AGRADECIMENTOS

Ao CNPq/PIBIC e à Pró-reitoria de Pesquisa da Unesp pela concessão da bolsa de IC ao primeiro autor.

REFERÊNCIAS BIBLIOGRÁFICAS

ABAVAR. Associação de Bananicultores do Vale do Ribeira. Disponível em: http://www.abavar.com.br/?go=news&&news_id=50 Acesso: 10 de outubro de 2018.

ARAÚJO, L.E. Impactos Ambientais em Bacias Hidragráficas – Caso da Bacia do Rio Paraíba. Revista Tecno – Lógica. Santa Crus do Sul, RS. v.13, n.2, p.109-115, 2009.

BERTONI, J. O espaçamento de terraços em culturas anuais, determinado em função das perdas por erosão. Bragantia, Campinas, n. 18, p. 113-140, 1959.

CÓDIGO FLORESTAL. **Lei Nº 12.651/12.** Revista Agronalysys. FGV, Fundação Getulio Vargas; v.32, nº.6, 22.p. 2012.

COUTINHO, M. L., et al. Delimitação de áreas de preservação permanente a partir técnicas de geoprocessamento. XII Encontro Latino Americano de Iniciação Científica e VIII Encontro Latino Americano de PósGraduação – Universidade do Vale do Paraíba. Alegre – Espirito Santo, 2013.

DENARDIN, J. E. Erodibilidade do solo estimada por meio de parâmetros físicos e químicos. 1990.113 f. Tese (Doutorado em Solos e Nutrição de Plantas) - Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba.

EMBRAPA – Empresa Brasileira de Pesquisa Agropecuária. Sistema Brasileiro de Classificação do Solo. Brasília: Embrapa, 5ª edição, 2018. 356 p.

FAO. Statistical Database — FAOSTAT. Disponível em: http://faostat.fao.org/>. Acesso em: 20 de março de 2016.

FERREIRA, D. F. Sisvar: A computer statistical analysis system. Ciência e Agrotecnologia, Lavras – MG, vol.35, no.6, 2011.

FOSTER, G. R.; MCCOOL, D. K.; RENARD, K. G. MOLDENHAUER, W.C. Conversion of the universal soil loss equation to SI metric units. Journal of Soil na Water Conservation, p. 355-359, 1981.

IORI, P. Impacto do uso do solo em área de Proteção Permanente da Sub – Bacia do Rio Ribera de Iguape, SP. 2008 – 2010. Tese (Mestre em Ciência do Solo) Universidade Federal de Lavras. Minas Gerais.

RIGHETTO, A. M. Hidrologia e recursos hídricos. São Carlos: EESC/USP, 1998. 840 p.

SILVA, R. B.; IORI, P.; SILVA F. A. M. Predisposição e validações de equações para estimativa da erosividade de dois municípios do estado de São Paulo. Revista Irriga da Unesp — FCA- Botucatu- SP, vol. 14, no.4, p.533-547, 2010.

WISCHMEIER, W. H.; SMITH, D. D. Rainfall energy and its relationship to soil loss. Trans. Amer. Geophys. Un., Washington, 1958.

WISCHMEIER, W. H.; SMITH, D. D. Predicting rainfall erosion losses from cropland east of the Rocky Mountain. Washington, DC: ARS/USDA, 1965.

Figura 1 - Mapa do Estado de São Paulo destacando a região Sul onde foi realizado o projeto.

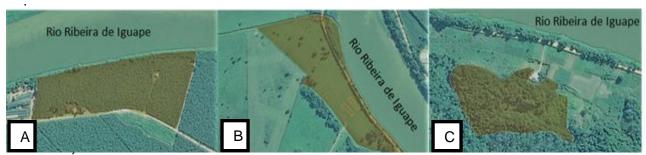


Figura 2 - Áreas experimentais: a) cultivo de banana, b) pastagem, c) mata nativa. Registro - SP

Tabela 1. Valores estimados de erodibilidade do solo, fator K (t ha⁻¹ h MJ⁻¹ mm⁻¹) e de perda anual de solo (A) em t ha⁻¹ ano⁻¹.

Uso do Solo	Faixas marginais (m)	K	Α
Pastagem	0,0 a 30	0,0752	0,47
	50 a 100	0,0593	0,64
Bananal	0,0 a 30	0,0626	4,8
	50 a 100	0,0590	7,7

^{*}A = valores estimados de perda de solo, baseados nos fatores K etimados pela modelo de Denardin (1990).