ISBN:

978-85-85564-24-7

PRODUTIVIDADE E COMPOSIÇÃO DOS GRÃOS DE SOJA EM ROTAÇÃO COM CULTURAS DE COBERTURA APÓS O APORTE DE NITROGÊNIO

<u>Sandro Roberto Brancalião</u>¹; Edis Moacir Brancalião²; Adriano Tosoni da Eira Aguiar³; Cássia Regina Limonta Carvalho³; Carlos Eduardo Rossi³.

RESUMO

Com o objetivo de avaliar, em sistema de semeadura direta (SSD), culturas de cobertura em rotação com a soja e a contribuição da adubação nitrogenada para a formação de palhada e também, seu reflexo na produtividade e composição dos grãos da cultura da soja. Foi implantado em 2005, no Centro Experimental Central (CEC-IAC-Santa Elisa) em Latossolo Vermelho Distroférrico, um experimento em blocos ao acaso, com quatro repetições. As medidas de teor de óleo e proteína nos grãos mostraram que mesmo com adição N em cobertura, o aumento do óleo não foi atingido, entretanto ganhos em relação ao pousio para produtividade e proteína foram obtidos. O pousio (T5) apresentou menor produtividade de grãos de soja, destacando a importância de manter o solo recoberto.

Palavras-chave: plantio direto, manejo, leguminosas, triticale.

SUMMARY

The aim of this work was evaluate at No-Tillage System (NTS), with cover-crops and a soybean rotation, the contribution of the nitrogen fertilization to the improve of the straw, the yield and soybean grain composition. We adjust the statistical model analysis in a randomized blocks design with four replications, at the Experimental Station Center (ESC-IAC-Santa Elisa) above a Oxisol. The oil amount in the soybean grains showed as soon as the nitrogen addition with side-dressed do not improve, therefore the oil was not reached, but the protein differed. For the other hand, to the other attributes of the oil is very high: protein and yield overall the fallow (T5) and the yield and straw the correlation was linear.

Key-words: no-tillage, management, leguminous, *Triticum secale*.

INTRODUÇÃO

O Brasil assume um papel fundamental no abastecimento do mercado mundial de grãos utilizando a prática conservacionista, através do manejo de semeadura direta (SSD). Soja, milho, algodão, trigo, feijão e arroz merecem todo respeito da comunidade internacional quando verificamos a evolução em produtividade dos últimos 30 anos.

¹Pesquisador Científico, Institututo Agronômico, CEP: 14001-970; Ribeirão Preto, SP.E-mail: brancaliao@iac.sp.gov.br

² Professor da Fundação Educacional Ernesto Riscali, CEP:15400-000, Olímpia, SP; edistrevo@ig.com.br .

³ Pesquisadores Científicos, Instituto Agronômico C.P.28, CEP:13012-970, Campinas, SP.

O carbono orgânico do solo e o nitrogênio são elementos chaves na sustentabilidade da agricultura, ao passo que a dinâmica destes elementos necessita de estudos mais aprofundados e direcionados em diferentes condições edafoclimáticas onde o Sistema Plantio Direto é implementado.

A estratégia de manejo na agricultura não pode ser tão somente limitada pela produtividade, mas necessita ser estuda e desenvolvida com suporte na qualidade da água, ar e solo, dando suporte a saúde humana e a qualidade de vida (Zangh et al.,2009). A qualidade física do solo pode ser mensurada por atributos físicos, químicos e biológicos, entretanto a matéria orgânica é um dos mais valiosos indicadores de qualidade dentro de agroecossistemas. Os atributos físicos permitem inferir sobre a sua modificação em função do acúmulo de matéria orgânica do solo através de diferentes aportes de fitomassa.

Do ponto de vista do SSD, estudar esta dinâmica em uma oleaginosa como a soja, é de suma importância, quando queremos obter alta rentabilidade e qualidade nos componentes da produção e sua interação com ambiente.

A partir de estudos como este, o manejo fica em primeiro plano, por se tratar de técnicas que auxiliam o produtor vislumbrando boa rentabilidade de grãos com qualidade ambiental. O componente genético teve sempre seu valor e apoiou esta mudança nas práticas culturais e da forma do produtor visualizar o solo como seu patrimônio, sabendo que suas futuras gerações herdariam, além dos conceitos, atitudes de preservação e ganhos de produtividade, paralelamente.

O SSD não é só uma técnica de cultivo, mas sim um sistema de manejo do solo, que antigos estudos de adubação, manejo e desenvolvimento de cultivares não podem só serem recalcados, mas sim estudados em uma nova ótica.

A dinâmica da fertilidade do solo tem mostrado baixa sensibilidade às mudanças promovidas pelos sistemas de manejo na dinâmica do C do solo, o que levou a utilização do manejo com adubação nitrogenada (Dou et al., 2008). Além do mais, a qualidade do solo é melhorada (Bayer & Mielniczuc, 2008). O carbono contido nas diferentes frações do solo, separadas, também é um indicador do grau de proteção da matéria orgânica do solo, e só pode ser conservado com a adição adequada de N e a proteção deste carbono da microbiota (Balabane & Plante, 2004). Por outro lado, nem sempre maiores quantidades de resíduos culturais depositadas resultam em um maior acumulo de matéria orgânica no solo e também de N total(MOS). Diante disto a adubação nitrogenada, o tipo de fonte utilizada, o desenvolvimento da cultura em pré-safra, tanto quanto a época de semeadura quanto ao potencial de recobrimento do solo, podem ser mais bem desenvolvidos dentro de um sistema de produção.

A cultura da soja requer nitrogênio também via adubação, não somente pela simbiose, sabendo - se hoje em dia que até 24 Kg N.ha-1, não competem pela nodulação, nem depreciam este processo biológico (Bárbaro, et al, 2007).

O objetivo do presente trabalho foi estudar o reflexo da adubação nitrogenada nas culturas de cobertura e o acúmulo de óleo na cultura da soja, bem como sua produtividade.

MATERIAL E MÉTODOS

O estudo foi conduzido em Latossolo Vermelho Distroférrico (Embrapa, 2006), tendo o solo sido corrigido em relação aos níveis de fertilidade em 2005, com calagem superficial na dose de 2,5 tha⁻¹ para elevação do índice de saturação por

bases (V%) a 60. O nitrogênio na planta de cobertura foi aplicado no préflorescimento.

Os tratamentos em rotação com a cultura da soja foram: T1: Triticale-IAC-2 (sem N em cobertura);T2:Triticale (30 Kg Nha⁻¹ em cobertura);T3: Triticale (60 Kg N ha⁻¹ em cobertura); T4: Chícharo (*Latyrus sativum*) e T5: Pousio no Inverno. A fonte de nitrogênio utilizada para o triticale foi o Nitrato de Amônio (33% N).

No ano anterior: a quantidade de matéria seca em cobertura final, respectivamente, de fitomassa das plantas de cobertura e da soja verão, por tratamentos foi de: T1: 4,5 t/ha/ano, T1: 2,5 t/ha/ano; T2: 5,2 t/ha/ano, T2: 2,8 t/ha/ano; T3: 5,7 t/ha/ano, T3: 3,1 t/ha/ano; T4: 3,1 t/ha/ano, T4: 2,8 t/ha/ano; T5: 3,5 t/ha/ano; T5: 2,7 t/ha/ano. A seguir foram coletadas as amostras para comparação dos tratamentos. Foram determinadas para as plantas de Cobertura a produção de fitomassa e recobrimento do solo e para a soja, a produtividade e teor de óleo e proteína nos grãos da soja IAC-23. As variáveis avaliadas foram analisadas pelo teste F para análise de variância e teste Student a 5% com o auxílio do programa Sisvar (Lavras).

RESULTADOS E DISCUSSÃO

Na tabela 1, verifica-se que houve um aumento do teor de proteína comparado ao triticale sem adubação de cobertura, o que implica em um provável aumento da resposta da planta de soja no acúmulo de N, nos grãos.

Tabela 1. Resultados dos componentes principais da soja (IAC-23), após o uso de nitrogênio.

Tratamentos U	midad	M.S.	Proteína	Proteína	Proteína	Proteína	Óleo	Óleo
	e (%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
			(%N x	(%N x	(%N x	(%N x		
			6,25)	6,25)	5.71)	5.71)		
T1	8,54a	91,46a	42,57a	46,55b	38,90b	42,53a	18,76a	20,51a
T2	8,38a	91,62a	44,48a	48,55a	40,63a	44,35a	18,21a	19,88a
Т3	8,96a	91,04a	43,81a	48,12a	40,02a	43,96a	18,56a	20,39a
T4	8,93a	91,07a	42,72a	46,92b	39,03a	42,86a	18,41a	20,22a
T5	8,65a	91,35a	44,89a	49,14a	41,01a	44,89a	17,63a	19,30a

Pode-se destacar também na Tabela 2, que a produtividade de massa seca (MS) respondeu linearmente com a produtividade de soja, o que demonstra eficiência do uso do N e a resposta das doses estudadas. Sendo assim o deve atentar que os ganhos em produtividade poderiam ser maiores, pois este Latossolo, com 60% de argila tem alto poder tampão e com doses modestas em cobertura não foi possível verificar ganhos expressivos na produtividade de soja, com exceção da comparação ao pousio (T5).

Segundo Balabane & Plante, 2004, pode-se trabalhar com solos mais argilosos e estudar o acúmulo na retenção de cátions, mas o efeito na matéria

Letras iguais não diferem entre si, segundo teste LSD, student (p< 5% de probabilidade).

** T1: Triticale-IAC-2 (sem N em cobertura);T2:Triticale (30 Kg Nha⁻¹ em cobertura);T3: Triticale (60 Kg N ha⁻¹ em cobertura); T4: Chícharo (Latyrus sativum) e T5: Pousio no Inverno.

orgânica e nas culturas sucessoras tem um efeito mais lento, devido ao 'turn over', ou seja, a baixa ciclagem nestes solos com esta classe granulométrica.

O triticale tem grande capacidade alelopática, e o consumo da palha anterior foi muito grande, isto pode ter influenciado no acumulo do N na resteva de triticale. Em outra oportunidade o teor de N nas espiguetas e nas folhas da gramínea poderia ser avaliado.

Tabela 2. Resultados da Quantidade de Massa de Matéria Seca das Culturas de Cobertura após a Adição de N e a produtividade da Soja na Sucessão.

Tratamentos**	Coberturas	MS t/ha	PRODUTIVIDADE kg/ha
Tratamento 1	Triticale 0N	2,8a*	2.878a
Tratamento 2	Triticale 30N	3,1a	2.679a
Tratamento 3	Triticale 60N	3,4a	2.876a
Tratamento 4	Chícharo	2,6a	2.657a
Tratamento 5	Pousio	1,8b	1.879b
CV		9,8	8,2
DMS		0,8	830

^{*}Médias seguidas de mesma letra na coluna não diferem entre si pelo teste de Student a 5% probabilidade

CONCLUSÕES

As medidas de teor de óleo e proteína nos grãos mostraram que mesmo com adição N em cobertura, o aumento do óleo não foi atingido, entretanto ganhos em relação ao pousio para produtividade e proteína foram obtidos. O pousio apresentou menor produtividade de grãos de soja, valorizando, ainda mais a importância a manutenção do solo recoberto.

REFERÊNCIAS BIBLIOGRÁFICAS

EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA -EMBRAPA. Sistema brasileiro de classificação de solos. 2.ed. Rio de Janeiro, Embrapa Solos, 2006. 306p.

^{**} T1: Triticale-IAC-2 (sem N em cobertura);T2:Triticale (30 Kg Nha⁻¹ em cobertura);T3: Triticale (60 Kg N ha⁻¹ em cobertura); T4: Chícharo (*Latyrus sativum*) e T5: Pousio no Inverno.

BALABANE, M.; PLANTE, F. Aggregation and carbon storage in silty soil using physical fractionation techniques. **European Journal of Soil Science**, v.55, p.415-427, 2004

BAYER, C. & MIELNICZUK, J. Dinâmica e função da matéria orgânica. In: Santos, G.A.; Silva, L.S.; Canellas, L.P.; Camargo, F.A. O. (Eds). Fundamentos da Matéria Orgânica do Solo: ecossistemas tropicais e subtropícais. 2 ed. Porto Alegre: Metrópole, 2008. p.7-18.

Bárbaro, I.M. Brancalião, S.R.Ticelli, M.É possível a fixação biológica de Nitrogênio no milho? Revista ActaScentiarum, Ituverava, p.24.v2.

DOU, F.; WRIGHT, A.L.; HONS; F.M. Sensitivy of labile soil organic carbon to tillage in wheat-based cropping systems. Soil Science Society of America Journal, v.72, p.1445-1453, 2008.